Host Control of Malaria Infections: Constraints on Immune and Erythropoeitic Response Kinetics
نویسندگان
چکیده
The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC) populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection) to those with compensatory erythropoiesis (boosted RBC production) or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time <or=2.4 h) were associated with lower parasitemia and less severe anemia. Thus tight synchronization in asexual parasite development might help control parasitemia. Finally, our simulations suggest that P. vivax can induce severe anemia as readily as P. falciparum for the same type of immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating) clinically, this suggests that P. falciparum adaptations for countering or evading immune responses are more effective than those of P. vivax.
منابع مشابه
Viral Infections and their Role in Autoimmune Diseases, with Emphasis on Mechanisms and Molecular Interactions
Introduction: The exact cause of most autoimmune diseases is still unknown; however, several factors play a role in causing or exacerbating autoimmune reactions. In addition to environmental factors such as bacterial, parasitic, fungal and viral infections, factors such as genetic characteristics and lifestyle are also included. Infections caused by viruses usually trigger a strong immune respo...
متن کاملThe Use of Crude Plasmodium falciparum Antigens for Comparison of Antibody Responses in Patients with Mild Malaria vs. Cerebral Malaria
Background: Cerebral malaria (CM) is one of the major causes of death in African populations infected with Plasmodium falciparum. Only 1% of infected subjects develop CM. The reasons for these differences are not fully understood, but it is likely that the host humoral response against blood-stage antigens plays a role in protection from malaria, although the precise targets and mechanisms medi...
متن کاملThe Avian Transcriptome Response to Malaria Infection
Malaria parasites are highly virulent pathogens which infect a wide range of vertebrates. Despite their importance, the way different hosts control and suppress malaria infections remains poorly understood. With recent developments in next-generation sequencing techniques, however, it is now possible to quantify the response of the entire transcriptome to infections. We experimentally infected ...
متن کاملAge-structured red blood cell susceptibility and the dynamics of malaria infections.
Malaria parasites and immune responses in an infected human interact on a dynamic landscape, in which a population of replicating parasites depletes a population of replenishing red blood cells (RBCs). These underlying dynamics receive relatively little attention, but they offer unique insights into the processes that control most malaria infections. Here, we focus on the observation that three...
متن کاملFOSL1 Inhibits Type I Interferon Responses to Malaria and Viral Infections by Blocking TBK1 and TRAF3/TRIF Interactions
Innate immune response plays a critical role in controlling invading pathogens, but such an immune response must be tightly regulated. Insufficient or overactivated immune responses may lead to harmful or even fatal consequences. To dissect the complex host-parasite interactions and the molecular mechanisms underlying innate immune responses to infections, here we investigate the role of FOS-li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2008